Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Clin Infect Dis ; 2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2300276

ABSTRACT

The United States CDC defines a county metric of COVID-19 Community Levels to inform public health measures. We find that the COVID-19 Community Levels vary frequently over time, which may not be optimal for decision making. Alternative metric formulations that do not compromise predictive ability are shown to reduce variability.

2.
Nat Med ; 29(2): 358-365, 2023 02.
Article in English | MEDLINE | ID: covidwho-2185960

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infections in vaccinated individuals and reinfections in previously infected individuals have become increasingly common. Such infections highlight a broader need to understand the contribution of vaccination, including booster doses, and natural immunity to the infectiousness of individuals with SARS-CoV-2 infections, especially in high-risk populations with intense transmission, such as in prisons. Here we show that both vaccine-derived and naturally acquired immunity independently reduce the infectiousness of persons with Omicron variant SARS-CoV-2 infections in a prison setting. Analyzing SARS-CoV-2 surveillance data from December 2021 to May 2022 across 35 California state prisons with a predominately male population, we estimate that unvaccinated Omicron cases had a 36% (95% confidence interval (CI): 31-42%) risk of transmitting infection to close contacts, as compared to a 28% (25-31%) risk among vaccinated cases. In adjusted analyses, we estimated that any vaccination, prior infection alone and both vaccination and prior infection reduced an index case's risk of transmitting infection by 22% (6-36%), 23% (3-39%) and 40% (20-55%), respectively. Receipt of booster doses and more recent vaccination further reduced infectiousness among vaccinated cases. These findings suggest that, although vaccinated and/or previously infected individuals remain highly infectious upon SARS-CoV-2 infection in this prison setting, their infectiousness is reduced compared to individuals without any history of vaccination or infection. This study underscores benefit of vaccination to reduce, but not eliminate, transmission.


Subject(s)
COVID-19 , Male , Humans , SARS-CoV-2 , Reinfection , Breakthrough Infections
3.
JAMA Netw Open ; 5(4): e228526, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1801988

ABSTRACT

Importance: Despite widespread vaccination against COVID-19 in the United States, there are limited empirical data quantifying their public health impact in the population. Objective: To estimate the number of COVID-19 cases, hospitalizations, and deaths directly averted because of COVID-19 vaccination in California. Design, Setting, and Participants: This modeling study used person-level data provided by the California Department of Public Health (CDPH) on COVID-19 cases, hospitalizations, and deaths as well as COVID-19 vaccine administration from January 1, 2020, to October 16, 2021. A statistical model was used to estimate the number of COVID-19 cases that would have occurred in the vaccine era (November 29, 2020, to October 16, 2021) in the absence of vaccination based on the ratio of the number of cases among the unvaccinated (aged <12 years) and vaccine-eligible groups (aged ≥12 years) before vaccine introduction. Vaccine-averted COVID-19 cases were estimated by finding the difference between the projected and observed number of COVID-19 cases. Averted COVID-19 hospitalizations and deaths were assessed by applying estimated hospitalization and case fatality risks to estimates of vaccine-averted COVID-19 cases. As a sensitivity analysis, a second independent model was developed to estimate the number of vaccine-averted COVID-19 outcomes by applying published data on vaccine effectiveness to data on COVID-19 vaccine administration and estimated risk of COVID-19 over time. Exposure: COVID-19 vaccination. Main Outcomes and Measures: Number of COVID-19 cases, hospitalizations, and deaths estimated to have been averted because of COVID-19 vaccination. Results: There were 4 585 248 confirmed COVID-19 cases, 240 718 hospitalizations, and 70 406 deaths in California from January 1, 2020, to October 16, 2021, during which 27 164 680 vaccine-eligible individuals aged 12 years and older were reported to have received at least 1 dose of a COVID-19 vaccine in the vaccine era (79.5% of the eligible population). The primary model estimated that COVID-19 vaccination averted 1 523 500 (95% prediction interval [PI], 976 800-2 230 800) COVID-19 cases in California, corresponding to a 72% (95% PI, 53%-91%) relative reduction in cases because of vaccination. COVID-19 vaccination was estimated to have averted 72 930 (95% PI, 53 250-99 160) hospitalizations and 19 430 (95% PI, 14 840-26 230) deaths during the study period. The alternative model identified comparable findings. Conclusions and Relevance: This study provides evidence of the public health benefit of COVID-19 vaccination in the United States and further supports the urgency for continued vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , California/epidemiology , Humans , Public Health , United States , Vaccination
4.
BMJ ; 376: o354, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1759336

Subject(s)
COVID-19 , Humans , SARS-CoV-2
5.
Sci Rep ; 12(1): 3055, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1708001

ABSTRACT

A key public health question during any disease outbreak when limited vaccine is available is who should be prioritized for early vaccination. Most vaccine prioritization analyses only consider variation in risk of infection and death by a single risk factor, such as age. We provide a more granular approach with stratification by demographics, risk factors, and location. We use this approach to compare the impact of different COVID-19 vaccine prioritization strategies on COVID-19 cases, deaths and disability-adjusted life years (DALYs) over the first 6 months of vaccine rollout, using California as a case example. We estimate the proportion of cases, deaths and DALYs averted relative to no vaccination for strategies prioritizing vaccination by a single risk factor and by multiple risk factors (e.g. age, location). When targeting by a single risk factor, we find that age-based targeting averts the most deaths (62% for 5 million individuals vaccinated) and DALYs (38%) and targeting essential workers averts the least deaths (31%) and DALYs (24%) over the first 6 months of rollout. However, targeting by two or more risk factors simultaneously averts up to 40% more DALYs. Our findings highlight the potential value of multiple-risk-factor targeting of vaccination against COVID-19 and other infectious diseases, but must be balanced with feasibility for policy.


Subject(s)
COVID-19
6.
Lancet Infect Dis ; 21(11): 1495-1496, 2021 11.
Article in English | MEDLINE | ID: covidwho-1560994

Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Travel
7.
BMC Med ; 19(1): 116, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1219073

ABSTRACT

BACKGROUND: COVID-19 outbreaks have occurred in homeless shelters across the US, highlighting an urgent need to identify the most effective infection control strategy to prevent future outbreaks. METHODS: We developed a microsimulation model of SARS-CoV-2 transmission in a homeless shelter and calibrated it to data from cross-sectional polymerase chain reaction (PCR) surveys conducted during COVID-19 outbreaks in five homeless shelters in three US cities from March 28 to April 10, 2020. We estimated the probability of averting a COVID-19 outbreak when an exposed individual is introduced into a representative homeless shelter of 250 residents and 50 staff over 30 days under different infection control strategies, including daily symptom-based screening, twice-weekly PCR testing, and universal mask wearing. RESULTS: The proportion of PCR-positive residents and staff at the shelters with observed outbreaks ranged from 2.6 to 51.6%, which translated to the basic reproduction number (R0) estimates of 2.9-6.2. With moderate community incidence (~ 30 confirmed cases/1,000,000 people/day), the estimated probabilities of averting an outbreak in a low-risk (R0 = 1.5), moderate-risk (R0 = 2.9), and high-risk (R0 = 6.2) shelter were respectively 0.35, 0.13, and 0.04 for daily symptom-based screening; 0.53, 0.20, and 0.09 for twice-weekly PCR testing; 0.62, 0.27, and 0.08 for universal masking; and 0.74, 0.42, and 0.19 for these strategies in combination. The probability of averting an outbreak diminished with higher transmissibility (R0) within the simulated shelter and increasing incidence in the local community. CONCLUSIONS: In high-risk homeless shelter environments and locations with high community incidence of COVID-19, even intensive infection control strategies (incorporating daily symptom screening, frequent PCR testing, and universal mask wearing) are unlikely to prevent outbreaks, suggesting a need for non-congregate housing arrangements for people experiencing homelessness. In lower-risk environments, combined interventions should be employed to reduce outbreak risk.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/prevention & control , Computer Simulation , Disease Outbreaks/prevention & control , Ill-Housed Persons , Infection Control/methods , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/statistics & numerical data , Cities/epidemiology , Cities/statistics & numerical data , Computer Simulation/statistics & numerical data , Cross-Sectional Studies , Disease Outbreaks/statistics & numerical data , Ill-Housed Persons/statistics & numerical data , Housing/statistics & numerical data , Humans , Infection Control/statistics & numerical data , Mass Screening/methods , Mass Screening/statistics & numerical data , United States/epidemiology
8.
Lancet Infect Dis ; 21(7): 929-938, 2021 07.
Article in English | MEDLINE | ID: covidwho-1145005

ABSTRACT

BACKGROUND: Routine viral testing strategies for SARS-CoV-2 infection might facilitate safe airline travel during the COVID-19 pandemic and mitigate global spread of the virus. However, the effectiveness of these test-and-travel strategies to reduce passenger risk of SARS-CoV-2 infection and population-level transmission remains unknown. METHODS: In this simulation study, we developed a microsimulation of SARS-CoV-2 transmission in a cohort of 100 000 US domestic airline travellers using publicly available data on COVID-19 clinical cases and published natural history parameters to assign individuals one of five health states of susceptible to infection, latent period, early infection, late infection, or recovered. We estimated a per-day risk of infection with SARS-CoV-2 corresponding to a daily incidence of 150 infections per 100 000 people. We assessed five testing strategies: (1) anterior nasal PCR test within 3 days of departure, (2) PCR within 3 days of departure and 5 days after arrival, (3) rapid antigen test on the day of travel (assuming 90% of the sensitivity of PCR during active infection), (4) rapid antigen test on the day of travel and PCR test 5 days after arrival, and (5) PCR test 5 days after arrival. Strategies 2 and 4 included a 5-day quarantine after arrival. The travel period was defined as 3 days before travel to 2 weeks after travel. Under each scenario, individuals who tested positive before travel were not permitted to travel. The primary study outcome was cumulative number of infectious days in the cohort over the travel period without isolation or quarantine (population-level transmission risk), and the key secondary outcome was the number of infectious people detected on the day of travel (passenger risk of infection). FINDINGS: We estimated that in a cohort of 100 000 airline travellers, in a scenario with no testing or screening, there would be 8357 (95% uncertainty interval 6144-12831) infectious days with 649 (505-950) actively infectious passengers on the day of travel. The pre-travel PCR test reduced the number of infectious days from 8357 to 5401 (3917-8677), a reduction of 36% (29-41) compared with the base case, and identified 569 (88% [76-92]) of 649 actively infectious travellers on the day of flight; the addition of post-travel quarantine and PCR reduced the number of infectious days to 2520 days (1849-4158), a reduction of 70% (64-75) compared with the base case. The rapid antigen test on the day of travel reduced the number of infectious days to 5674 (4126-9081), a reduction of 32% (26-38) compared with the base case, and identified 560 (86% [83-89]) actively infectious travellers; the addition of post-travel quarantine and PCR reduced the number of infectious days to 3124 (2356-495), a reduction of 63% (58-66) compared with the base case. The post-travel PCR alone reduced the number of infectious days to 4851 (3714-7679), a reduction of 42% (35-49) compared with the base case. INTERPRETATION: Routine asymptomatic testing for SARS-CoV-2 before travel can be an effective strategy to reduce passenger risk of infection during travel, although abbreviated quarantine with post-travel testing is probably needed to reduce population-level transmission due to importation of infection when travelling from a high to low incidence setting. FUNDING: University of California, San Francisco.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Carrier State/diagnosis , Pandemics/prevention & control , Aircraft/statistics & numerical data , Asymptomatic Infections , COVID-19/transmission , COVID-19/virology , Carrier State/virology , Computer Simulation , Diagnostic Tests, Routine/statistics & numerical data , Humans , SARS-CoV-2/pathogenicity , Travel/statistics & numerical data
9.
Clin Infect Dis ; 73(9): e3127-e3129, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-894564

ABSTRACT

Routine asymptomatic testing strategies for COVID-19 have been proposed to prevent outbreaks in high-risk healthcare environments. We used simulation modeling to evaluate the optimal frequency of viral testing. We found that routine testing substantially reduces risk of outbreaks, but may need to be as frequent as twice weekly.


Subject(s)
COVID-19 , Delivery of Health Care , Disease Outbreaks/prevention & control , Health Facilities , Humans , SARS-CoV-2
10.
medRxiv ; 2020 Apr 16.
Article in English | MEDLINE | ID: covidwho-823685

ABSTRACT

BACKGROUND: School closures have been enacted as a measure of mitigation during the ongoing COVID-19 pandemic. It has been shown that school closures could cause absenteeism amongst healthcare workers with dependent children, but there remains a need for spatially granular analyses of the relationship between school closures and healthcare worker absenteeism to inform local community preparedness. METHODS: We provide national- and county-level simulations of school closures and unmet child care needs across the United States. We develop individual simulations using county-level demographic and occupational data, and model school closure effectiveness with age-structured compartmental models. We perform multivariate quasi-Poisson ecological regressions to find associations between unmet child care needs and COVID-19 vulnerability factors. RESULTS: At the national level, we estimate the projected rate of unmet child care needs for healthcare worker households to range from 7.5% to 8.6%, and the effectiveness of school closures to range from 3.2% (R 0 = 4) to 7.2% (R 0 = 2) reduction in fewer ICU beds at peak demand. At the county-level, we find substantial variations of projected unmet child care needs and school closure effects, ranging from 1.9% to 18.3% of healthcare worker households and 5.7% to 8.8% reduction in fewer ICU beds at peak demand (R 0 = 2). We find significant positive associations between estimated levels of unmet child care needs and diabetes prevalence, county rurality, and race (p < 0.05). We estimate costs of absenteeism and child care and observe from our models that an estimated 71.1% to 98.8% of counties would find it less expensive to provide child care to all healthcare workers with children than to bear the costs of healthcare worker absenteeism during school closures. CONCLUSIONS: School closures are projected to reduce peak ICU bed demand, but could disrupt healthcare systems through absenteeism, especially in counties that are already particularly vulnerable to COVID-19. Child care subsidies could help circumvent the ostensible tradeoff between school closures and healthcare worker absenteeism.

11.
BMC Med ; 18(1): 218, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-645576

ABSTRACT

BACKGROUND: School closures have been enacted as a measure of mitigation during the ongoing coronavirus disease 2019 (COVID-19) pandemic. It has been shown that school closures could cause absenteeism among healthcare workers with dependent children, but there remains a need for spatially granular analyses of the relationship between school closures and healthcare worker absenteeism to inform local community preparedness. METHODS: We provide national- and county-level simulations of school closures and unmet child care needs across the USA. We develop individual simulations using county-level demographic and occupational data, and model school closure effectiveness with age-structured compartmental models. We perform multivariate quasi-Poisson ecological regressions to find associations between unmet child care needs and COVID-19 vulnerability factors. RESULTS: At the national level, we estimate the projected rate of unmet child care needs for healthcare worker households to range from 7.4 to 8.7%, and the effectiveness of school closures as a 7.6% and 8.4% reduction in fewer hospital and intensive care unit (ICU) beds, respectively, at peak demand when varying across initial reproduction number estimates by state. At the county level, we find substantial variations of projected unmet child care needs and school closure effects, 9.5% (interquartile range (IQR) 8.2-10.9%) of healthcare worker households and 5.2% (IQR 4.1-6.5%) and 6.8% (IQR 4.8-8.8%) reduction in fewer hospital and ICU beds, respectively, at peak demand. We find significant positive associations between estimated levels of unmet child care needs and diabetes prevalence, county rurality, and race (p<0.05). We estimate costs of absenteeism and child care and observe from our models that an estimated 76.3 to 96.8% of counties would find it less expensive to provide child care to all healthcare workers with children than to bear the costs of healthcare worker absenteeism during school closures. CONCLUSIONS: School closures are projected to reduce peak ICU and hospital demand, but could disrupt healthcare systems through absenteeism, especially in counties that are already particularly vulnerable to COVID-19. Child care subsidies could help circumvent the ostensible trade-off between school closures and healthcare worker absenteeism.


Subject(s)
Absenteeism , Child Care/economics , Coronavirus Infections/epidemiology , Health Personnel/statistics & numerical data , Pneumonia, Viral/epidemiology , Schools , Betacoronavirus , COVID-19 , Child , Computer Simulation , Feasibility Studies , Forecasting , Geography , Health Workforce , Humans , Intensive Care Units , Needs Assessment , Pandemics , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL